American Society of Civil Engineers Environmental Design Competition UGRADS Presentation

....

Alex Anzar, Shelby Carawan, Paige Reilly, Cameron Rhodes April 27, 2018

1.7 million deaths per year can be attributed to the unsafe water supply and unsanitary treatment methods within developing countries [1].

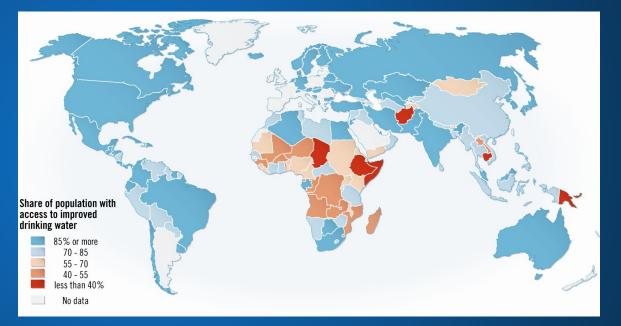


Figure 1: Global Distribution of Improved Drinking Water [1]

The 2018 Pacific Southwest Conference (PSWC) took place in Tempe, Arizona on April 12th [2].

The goal of the project was to design and construct a reusable household water treatment system with a budget of \$500 [2].

Figure 2: PSWC 2018 NAU Environmental Design Team (Photo courtesy of Shelby Carawan)

Table 1: Contaminant Quantities Per 34L Sample [2]

Contaminant	Quantity Per Nine Gallon Sample
Miracle Gro All Purpose Plant Food	1000 g
Bulk Apothecary Kaolin Clay	1000 g
Star Kay White Pure Lavender Extract	30 mL
Wastewater Treatment Plant (WWTP) Effluent	20 mL

Table 2: Water Quality Testing Parameters and Water Quality GoalsCompared to World Health Organization (WHO) Standards [2]

Parameters	Competition Goal	WHO Standards
Total P-PO ₄ ³⁻	\leq 1 mg/L	1 mg/L
Total N-NO ₃ -	\leq 10 mg/L	10 mg/L
Turbidity	\leq 1 NTU	1 NTU
Chlorine	4 ± 1 ppm	4 ppm
Total Coliforms	No Coliforms	\leq 5%
Odor	No Odor	N/A

Carawan 4

Stakeholders:

- Populations of developing regions
- Northern Arizona University (NAU)
- NAU ASCE student chapter
- The client, Mark Lamer

Challenge:

• The difference in climate between Flagstaff and the competition location, Tempe [2].

Figure 3: PSWC 2018 NAU Environmental Design Team Construction (Photo courtesy of Paige Reilly)

Scope of Services

- Literature Review
 1.1 Developing Country Resources
 1.2 Treatment Methods
- 2. Unit Design Selection
 2.1 Component Prototyping
 2.2 Software Schematic
- 3. Acquisition of Materials
- 4. 30% Report

Figure 4: Water Collection at a Borehole by Children in Salima, Malawi [3]

Scope of Services

- Fabrication
 5.1 Prototyping
 5.2 Final Design
- 6. Prototype Testing6.1- 6.6 Test Each Parameter Unit
- Compile Results and Construct Final Design
 7.1 Component Integration and Optimization
- 8. 60% Report

Figure 5: A Local Village Collecting Water in Sub-Saharan Africa [4]

Scope of Services

- 9. Perform at PSWC Competition
 - 9.1 Construct and Operate Device
 - 9.2 Present Process Flow Diagram
 - 9.3 Technical Presentation
- 10. Website
- 11. UGRADS Presentation
- 12. Final Report
- 13. Project Coordination

Figure 6: Children in Nigeria Collecting Water at a Local Water Source [4]

Water Treatment Process

- 1. Sedimentation
- 2. Sand filter
- 3. Ion-exchange resin
- 4. Granular activated carbon
- 5. Collection bucket

Note: 100% cotton cloth layers will cover the bottoms of the buckets

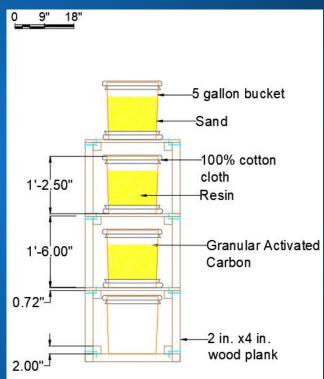
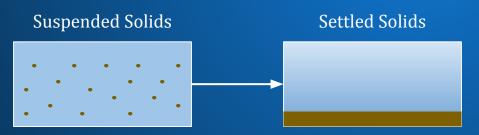


Figure 7: AutoCAD Drawing of Wastewater Treatment System Final Design

Step 1: Sedimentation

Sedimentation reduces initial turbidity by allowing suspended kaolin clay particles to settle.

Equation 1: Settling Velocity Settling Velocity of Clay = Distance Settled/Time = 0.762 cm/min ∴ 0.745 m² ideal size of settling area for 6 min settling



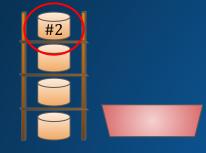
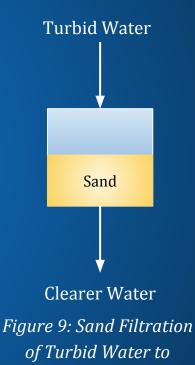

Figure 8: The Sedimentation Process over a Period of Time

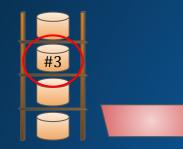
Table 3: Turbidity Testing Results from Sedimentation

Turbidity Results

Units	NTU
WHO Standard	1
Raw Water Result	2,590
Final Water Result	190
Percent Eliminated	93%



Step 2: Sand Filtration


Sand filtration further reduces turbidity by decreasing the presence of kaolin clay and Miracle Gro potting mix.

Turbidity Results						
Units	NTU					
WHO Standard	1					
Raw Water Result	2,590					
Final Water Result	980					
Percent Eliminated	62%					

Table 4: Turbidity Testing Results from

Produce Clearer Water

Step 3: Ion-Exchange Resin

An ion-exchange resin was implemented to remove Nitrate and Phosphate levels.

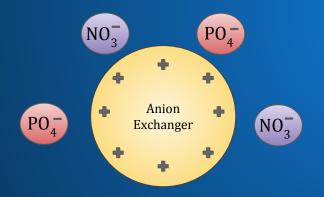
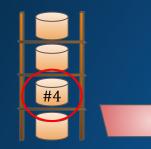
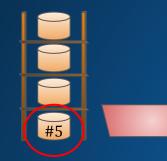



Figure 10: Anion Exchange Resin Attracts Negatively Charged Nitrate and Phosphate [5] Table 5: Phosphorus and Nitrogen Testing Results fromIon-Exchange Resin

Variable	P-PO ₄ ³⁻ Results	$N-NO_3^-$ Results
Units	mg/L	mg/L
WHO Standard	1	10
Raw Water Result	3390	50
Final Water Result	200	2.1
Percent Eliminated	94%	96%

Step 4: Granular Activated Carbon

Granular Activated Carbon aims to remove odor and any additional turbidity.


Table 6: Odor Results from Granular Activated Carbon Filtration

Odor Results						
Raw Water Result	Present					
Final Water Result	Present*					
Percent Eliminated	N/A					

*Reduced but still present

Figure 11: Granular Activated Carbon Filtration of Turbid Water to Produce Clearer Water

Step 5: Disinfection



Table 7: Chlorine Disinfection Quantities using Liquid HouseholdBleach (5% Sodium Hypochlorite) [6]

Storage	Tank	Concentration		
(gal)	(L)	1 ppm	5 ppm	
500	1,890	15 mL	177 mL	
250	946	7.4-10 mL	88.7 mL	
100	378	5 mL	22.2 mL	

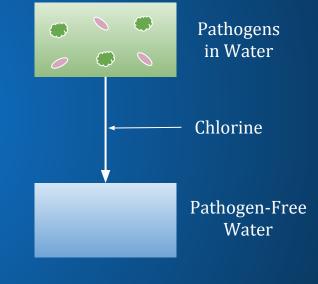


Figure 12: Chlorine Disinfection

Final Design Water Quality

Table 8: Final Design Water Quality Parameter Testing Results

Parameter	Units	Competition Goal	WHO Standard	Raw Water Result	Final Water Result	Percent Eliminated
P-P04 ³⁻	mg/L	≤1	1	3,390	200	94%
N-NO ₃ -	mg/L	≤ 10	10	50	2.1	96%
Turbidity	NTU	≤1	1	2,590	275	89%
Chlorine	ppm	4 ± 1	4 ppm	0 ppm	4 ppm	N/A
Total Coliforms	Unitless	No Coliforms	\leq 5%	Present	Not Present	100%
Odor	Unitless	No Odor	N/A	Present	Present	N/A

PSWC Performance

1st place in Arizona 4th place overall

Table 9: Lab Testing Performance at PSWC 2018

Parameter	Control	Results
Nitrate (mg/L)	35.8	6.3
Phosphate (mg/L)	2.75	2.75
Chlorine (ppm)	2.2	2.2
Coliforms	ND	ND
Turbidity (NTU)	461	461

Figure 13: Water Treatment Figure 14: Constructed Water Figure 15: Environmental System Construction at PSWC Treatment System at PSWC Design Team at PSWC 2018 2018 (Photo Courtesy of Cameron 2018 (Photo Courtesy of Rhodes) *Cameron Rhodes*)

(Photo Courtesy of Teresa *Carawan*)

Rhodes 16

Final Design Recommendations

- Competition rules also prohibited coagulants and flocculants to eliminate turbidity.
- 2. Time constraints did not allow biological methods to be used.
 - Moringa seeds were a cost-effective option for removing turbidity, but they require 1-2 hours to treat.

Figure 13: Water Treatment Using Moringa Seeds [7]

Carawan 17

Schedule

(Sept. 14, 2017 - May 1, 2018)

GANTT Project	$\overline{\mathbf{S}}$		2017	2.7 Units S	2018 elected		6.3 Fir	nal Design Inter <mark>8.3</mark>	<u> Present</u> 2 F
Name	Begin date	End date	November	December	January	February	March	April	Мау
1.0 Literature Review	9/14/17	1/15/18							
2.0 Unit Design	11/11/17	12/10/17							
3.0 Acquisition of Materials	11/16/17	2/9/18							
4.0 30% Report	2/1/18	2/15/18							
5.0 Fabrication	12/11/17	3/1/18							
6.0 Prototype Testing	12/11/17	1/18/18							
7.0 Compile Results	1/19/18	3/11/18			-				
8.0 60%	3/15/18	3/29/18							
9.0 PSWC Performance	3/12/18	4/14/18							
• 10.0 Final Website	4/15/18	5/4/18						_	
I1.0 UGRADS Presentation	4/13/18	4/27/18							
12.0 Final Report	4/17/18	5/1/18							
13.0 Project Coordination	9/14/17	5/1/18							

Figure 16: ASCE Environmental Design Capstone Schedule

- RED Critical Path defined by design tasks and presentation deadlines
- BLACK Actual Schedule

Table 10: Actual and Proposed Staffing Hours of Specified Tasks

Task		Staf	f (hrs)		Proposed	Actual	Difference
Tusk	PE	РМ	EIT	Tech	Total (hrs)	Total (hrs)	(hrs)
1. Literature Review	0	0	40	0	40	40	0
2. Unit Design	5	10	20	20	55	65	+10
3. Acquisition of Materials	0	0	3	3	6	6	0
4. 30% Report	6	6	6	0	18	21	+3
5. Fabrication	4	25	50	60	139	152	+13
6. Prototype Analysis	5	5	25	40	75	80	+5
7. Finalize Design	30	25	25	35	115	120	+5
8. 60% Report	10	10	15	0	35	35	0
9. PSWC Requirements	14	24	35	10	83	85	+2
10. Website	0	5	10	0	15	15	0
11. Final Presentation	5	5	7	0	17	21	+4
12. Final Proposal	10	10	10	0	30	35	+5
13. Project Coordination	10	10	10	10	40	40	0
Staff Total	99	135	256	178	668	715	+47

Staffing

Cost of Engineering Services

Table 11: Actual and Proposed Staffing Costs

Position Title	Base Pay Rate/Hour	Benefits % of Base Pay	Actual Pay/Hour	Proposed Hours	Proposed Total Cost	Actual Hours	Actual Total Cost
PE	\$90.00	40.00%	\$126.00	99	\$12,474	110	\$13,860
РМ	\$70.00	40.00%	\$98.00	135	\$13,230	150	\$14,700
EIT	\$50.00	30.00%	\$65.00	256	\$16,640	265	17,225
Tech	\$40.00	30.00%	\$52.00	178	\$9,256	190	\$9,880
	То	tal		668	\$51,600	715	\$55,665

\$4,065 (8%) increase from proposed amount

Cost of Engineering Services

Table 12: Total Materials Cost of Wastewater Treatment System

Item	Vendor	Unit	Cost Per Unit	Quantity	Total cost
2 in. by 4 in. Prime Stud		100 in. Stud	\$3.77	4	\$15.08
Plywood		48 in. x 96 in. Sheet	\$9.98	1	\$9.98
5 Gallon Bucket	Home Depot	1 Bucket	\$3.25	5	\$16.25
Screws	nome Depot	90 Nails	\$8.38	1	\$8.38
30 Gallon Storage Tote		1 Tote	\$9.97	1	\$9.97
Screwdriver		1 Screwdriver	\$0.87	4	\$3.48
Men's Crew T-Shirts	Walmart	10 T-Shirt Pack	\$19.93	1	\$19.93
Rubber Bands	vv aiiiiai t	64 Bands	\$1.27	1	\$1.27
Deionization Resin		5 Pounds	\$45.00	4	\$180.00
Bleach	Amazon	30 Ounces	\$8.14	1	\$8.14
Activated Carbon	Amazon	39 Ounces	\$16.99	8	\$135.92
Sand		50 Pounds	\$28.41	1	\$28.41
	\$436.81				

Cost of Engineering Services

Table 13: Actual and Proposed Travel Costs to Pacific Southwest Conference

Expense	Units	Quantity	Average Cost Per Unit	Proposed Total Cost	Actual Total Cost
Rental Car	Days	4	\$55.00	\$220	\$208
Gasoline	Gallons	40	\$3.00	\$120	\$110
Hotel Rooms	2 Rooms	4	\$400.00	\$1,600	\$1,240
Meals	3 Meals	16	\$30.00	\$480	\$320
Total Travel Costs				\$2,420	\$1,878

Table 14: Actual and Proposed Total Cost of Project

Average Cost Per Unit	Proposed Total Cost	Actual Total Cost	Difference
System Costs	\$500	\$436.81	- \$63.81
Staffing Costs	\$51,600	\$55,665	+\$4,065
Travel Costs	\$2,420	\$1,878	- \$542
Total Cost	\$54,710	\$57,980	+ \$3,270 (6%)

References

- [1] "WHO | Environment and health in developing countries", Who.int, 2017. [Online]. Available: http://www.who.int/heli/risks/ehindevcoun/en/.
- [2] American Society of Civil Engineers Environmental Design Competition. (2017). Flagstaff: Northern Arizona University, pp.1-9.
- [3] D. Armstrong. "Groundwater resources mapped in Africa", (2012).Earth Times. [Online]. Available: http://www.earthtimes.org/scitech/groundwater-resources-africa-mapped/1937/.
- [4] "Papplewick pumping station: Demand for water", *Papplewickpumpingstation.org.uk*, 2017. [Online]. Available: http://www.papplewickpumpingstation.org.uk/water_supply_in_developing_countries.html.
- [5] Central Department of Microbiology. "Ion Exchange Chromatography". (2018). Tribhuvan University. Institute of Science and Technology. [Online]. Available: https://microbiotu.edu.np/.
- [6] G. Bulfin, G. Bulfin, G. Bulfin, G. Bulfin, G. Bulfin and V. →, "How Much Chlorine in storage tank can Kill Bacteria?", Clean Well Water Report, 2018. [Online]. Available: https://www.cleanwaterstore.com/blog/how-much-chlorine-should-be-added-to-a-storage-tank-to-kill-bacteria/.
- [7] "Des graines d'arbre magiques pour purifier l'eau sale." *Irin. (2011). [Online].*

Figure 17: PSWC 2018 NAU Environmental Design Team (Photo courtesy of Taylor Erdmann)